TUGAS AKHIR

KAJIAN PROSES INFILTRASI PADA MODEL INFILTRASI BUATAN DALAM MENURUNKAN LIMPASAN PERMUKAAN

(Dengan Media Tanpa Tanaman)

Diajukan Guna memenuhi Persyaratan Untuk Memperoleh Gelar Sarjana Pada Fakultas Teknik Program Studi Teknik Sipil Universitas Muhammadiyah Yogyakarta

Diajukan oleh:

TYAS ILHAMI 20020110150

JURUSAN TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2007

LEMBAR PENGESAHAN

KAJIAN PROSES INFILTRASI PADA MODEL INFILTRASI BUATAN DALAM MENURUNKAN LIMPASAN PERMUKAAN

(Dengan Media Tanpa Tanaman)

Diajukan Oleh:

TYAS ILHAMI 20020110150

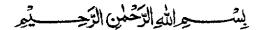
Tugas Akhir ini telah dipertahankan dan disahkan didepan Dewan Penguji Program Studi Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta Telah Diajukan, diperiksa dan disetujui oleh:

Burhan Barid, ST, MT.

Ketua Tim Penguji /DP I

Tanggal,

Jazaul Ikhsan, ST, MT.


Anggota Penguji I/DP II

14 86 2007 Tanggal,

Ir. H. Purwanto

Anggota Penguji II/sekretaris

KATA PENGANTAR

النسك كزم عَلَيْكُمْ وَرَحَمُةُ الْمَعْ وَبَرَّكَامُهُ

Puji dan syukur kami panjatkan kehadirat Allah SWT yang telah melimpahkan rahmat, taufik dan hidayah-Nya kepada hamba yang lemah ini, dan telah memberikan kekuatan pada diri penyusun sehingga penyusunan Skripsi ini dapat diselesaikan.

Tujuan penulisan ini merupakan salah satu syarat untuk menyelesaikan pendidikan strata satu untuk mencapai gelar Sarjana Teknik pada Fakultas Teknik Jurusan Teknik Sipil Universitas Muhammadiyah Yogyakarta.

Dalam penyusunan dan penyelesaian Skripsi ini, penyusun banyak menerima bantuan, bimbingan, pengarahan, petunjuk dan saran-saran dari berbagai pihak. Dengan segala kerendahan hati, penyusun mengucapkan terima kasih kepada:

- 1. Allah SWT, sebagai pemilik kekayaan, keabadian, kekuatan, pertolongan, kemuliaan, kemampuan, dan hikmah. Subhanallah......
- 2. Bapak Ir Wahyu Widodo, MT., selaku Dekan Fakultas Teknik Universitas Muhammadiyah Yogyakarta.
- 3. Bapak Gendut Hantoro, ST., MT., selaku Ketua Jurusan Teknik Sipil Fakultas Teknik Universitas Muhammadiyah Yogyakarta.
- 4. Bapak Burhan Barid, ST, MT., selaku Dosen Pembimbing I/ Ketua Tim Penguji, sehingga Tugas Akhir ini dapat diselesaikan dengan lancar.
- 5. Bapak Jazaul Ikhsan ST, MT., selaku Dosen Pembimbing IV Anggota Tim Penguji I, sehingga Tugas Akhir ini dapat diselesaikan dengan lancar.
- Bapak Ir. H Purwanto, selaku Anggota Tim Penguji II, sehingga Tugas Akhir ini dapat diselesaikan dengan lancar.
- Seluruh dosen JTS FT UMY, trima kasih telah berbagi ilmunya, semoga dapat menjadi ilmu yang bermanfaat bagi kami.

8. Staf dan karyawan JTS FT UMY: Ibu Restu, Pak Nurcholis, Pak Qurnadis, Pak Taufik, Pak Sumadi dan Pak Sadad, trimakasih atas bantuannya selama ini, semoga menjadi amal jariyah.

9. Bunda dan Abah terimakasih untuk semua yang telah kalian berikan buat Tyas, Tyas berdoa semoga Allah SWT., selalu menyayangi dan melindungi kalian berdua. Semoga tyas bisa menjadi *qurota a'yun* untuk kalian berdua.

10. Adik-adikku (De' Atfa dan De' Dhuha) yang telah memberikan doa, kasih sayang, perhatian, dukungan dan dorongan, sehingga TA ini cepat selesai.

11. Temen-temen TS 02, makasih tlah memberikan inspirasi dan semangat buatku.

12. senior dan junior-juniorku terimakasih doanya dan dorongannya.

13. Serta semua pihak yang tak dapat penulis sebutkan satu persatu dan semoga Tugas Akhir ini dapat berguna dan dapat menambah wawasan pengetahuan kita.

Penyusun menyadari bahwa dalam penyusunan Tugas Akhir ini masih belum sempurna, oleh karena itu semua saran dan kritik yang konstruktif sangat dibutuhkan demi perbaikan penelitian selanjutnya.

Akhir kata semoga penelitian ini dapat bermanfaat bagi semua dan khususnya bagi penyusun. Amin Yarobbal'alamin.....

وَالسِّكَ لَا مُعَلِيًّا ۚ وَرَحَمُ الْعَلَمُ وَرَكُمُ الْعَلَمُ وَرَكُمُ الْعَلَمُ وَرَكُوانَهُ

Yogyakarta, Februari 2006

Penyusun

DAFTAR ISI

HALAM	AN JUDUL	i
HALAM	AN PENGESAHAN	ii
HALAM	AN MOTTO	iii
HALAM	AN PERSEMBAHAN	iv
HALAM	AN TERIMA KASIH	v
KATA P	ENGANTAR	vi
DAFTAI	RISI	viii
DAFTAI	R GAMBAR	xi
DAFTAI	R TABEL	xiii
DAFTAI	R LAMPIRAN	xiv
INTISAI	RI	xv
BAB I.	PENDAHULUAN	
A	Latar Belakang	1
В	Tujuan Penelitian	2
C	Manfaat Penelitian	2
D	Batasan Masalah	2
E	Keaslian Penelitian	3
BAB II.	TINJAUAN PUSTAKA	
A	Infiltrasi	4
В	Hidrologi	5
C	. Tanah	
•	1. Umum	9
	2. Jenis-jenis Tanah	10
D	. Drainasi	
	1. Pengertian Drainasi	11
	2. Jenis Drainasi	12
	3 Behan Drainasi	14

вав пі.	LANDASAN TEORI	
A.	Infiltrasi	18
В.	Debit Aliran	22
C.	Permeabilitas Tanah	23
D.	Bioretention System	24
E.	Limpasan Permukaan	29
BAB IV.	METODOLOGI PENELITIAN	
A.	Tahapan Penelitian	32
B.	Bahan Penelitian	33
C.	Pelaksanaan Penelitian	37
D.	Alat	38
BAB V.	HASIL PENGUJIAN DAN PEMBAHASAN	
Α.	Proses Infiltrasi pada Model Infiltrasi Puatan	
	a) Pengujian Aliran Debit Besar	40
	b) Pengujian Aliran debit Sedang	41
	c) Pengujian Aliran debit Kecil	43
В.	Tinggi Muka Air Selama Proses Infiltrasi	
1	. Ketinggian Muka Air Limpasan	
	a) Pengujian Aliran Debit Besar	45
	b) Pengujian Aliran debit Sedang	45
	c) Pengujian Aliran debit Kecil	46
2	. Ketinggian Muka Air Lapisan	
	a) Pengujian Aliran Debit Besar	47
	b) Pengujian Aliran debit Sedang	48
	c) Pengujian Aliran debit Kecil	48
C.	Pengaruh Waktu dalam Proses Pengeringan pada	
	Model Infiltrasi Buatan	
	a) Pengujian Aliran Debit Besar	49

	b) Pengujian Aliran debit Sedang	51
	c) Pengujian Aliran debit Kecil	53
BAB VI.	KESIMPULAN DAN SARAN	
A.	Kesimpulan	57
B.	Saran	58
DAFTAR PUSTAKA		69
LAMPIR	AN	

DAFTAR GAMBAR

Gambar	2.1	Ilustrasi skema daur hidrologi	7
Gambar	3.1	Proses infiltrasi dalam tanah	19
Gambar	3.2	Tampak atas Bioretention system	27
Gambar	3.3	Pot A-A	27
Gambar	4.1	Bagan alir tahap penelitian	32
Gambar	4.2	Tampak atas rencana pembuatan model infiltrasi buatan	34
Gambar	4.3	Potongan A-A	35
Gambar	4.4	Sketsa model infiltrasi buatan	36
Gambar	5.1	Hubungan debit air dan waktu pengukuran pada aliran	
		debit besar	40
Gambar	5.2	Hubungan infiltrasi dan waktu pengukuran pada aliran	
	-	debit besar	41
Gambar	5.3	Hubungan debit air dan waktu pengukuran pada aliran	
		debit sedang	41
Gambar	5.4	Hubungan infiltrasi dan waktu pengukuran pada aliran	
		debit kecil	42
Gambar	5.5	Hubungan debit air dan waktu pengukuran pada aliran	
		debit kecil	43
Gambar	5.6	Hubungan infiltrasi dan waktu pengukuran pada aliran	
		debit kecil	43
Gambar	5.7	Hubungan ketinggian limpasan dan waktu pengukuran pada	
		aliran debit besar	45
Gambar	5.8	Hubungan ketinggian limpasan dan waktu pengukuran pada	
		aliran debit sedang	45
Gambar	5.9	Hubungan ketinggian limpasan dan waktu pengukuran pada	
•		aliran dehit kecil	45

Gambar	5.10 Hubungan ketinggian lapisan dan waktu pengukuran pada	
	aliran debit besar	47
Gambar	5.11 Hubungan ketinggian lapisan dan waktu pengukuran pada	
	aliran debit sedang	48
Gambar	5.12 Hubungan ketinggian lapisan dan waktu pengukuran pada	
	aliran debit kecil	48
Gambar	5.13 Hubungan debit keluar 2 dan waktu pengukuran pada	
	aliran debit besar	49
Gambar	5.14 Hubungan ketinggian limpasan dan waktu pengukuran pada	
	aliran debit besar	50
Gambar	5.15 hubungan ketinggian lapisan dan waktu pengukuran pada	
	aliran debit besar	51
Gambar	5.16 Hubungan debit keluar 2 dan waktu pengukuran pada	
	aliran debit sedang	51
Gambar	5.17 Hubungan ketinggian limpasan dan waktu pengukuran pada	
	aliran debit sedang	52
Gambar	5.18 hubungan ketinggian lapisan dan waktu pengukuran pada	
	aliran debit sedang	53
Gambar	5.19 Hubungan debit keluar 2 dan waktu pengukuran pada	
	aliran debit kecil	53
Gambar	5.20 Hubungan ketinggian limpasan dan waktu pengukuran pada	
	aliran debit kecil	54
Gambar	5.21 hubungan ketinggian lapisan dan waktu pengukuran pada	-
	aliran dahit kacil	55

DAFTAR TABEL

Tabel	2.1	Jenis tanah berdasarkan ukuran butir	10
Tabel	3.1	Nilai (k) untuk jenis-jenis tanah	23

DAFTAR LAMPIRAN

Lampiran I Daftar Tabel Hasil Pengujian	
A. Proses Infiltrasi Pada Model Infiltrasi Buatan	
a. Pengujian Aliran Debit Besar	60
b. Pengujian Aliran Debit sedang	61
c. Pengujian Aliran Debit Kecil	61
B. Tinggi Muka Air selama Proses Infiltrasi	
1. Ketinggian Muka air Limpasan	
a. Pengujian Aliran Debit Besar	62
b. Pengujian Aliran Debit Sedang	63
c. Pengujian Aliran Debit Kecil	64
2. Ketinggian Muka air Lapisan	
a. Pengujian Aliran Debit Besar	64
b. Pengujian Aliran Debit Sedang	65
c. Pengujian Aliran Debit Kecil	66
C. Pengaruh Waktu dalam Proses Pengeringan Pada	
Model Infiltrasi Buatan	
a. Pengujian Aliran Debit Besar	66
b. Pengujian Aliran Debit sedang	69
c. Pengujian Aliran Debit Kecil	72
Lampiran II Daftar Gambar dan Alat	

INTISARI

Perkembangan pembangunan saat ini telah mengalami banyak peningkatan, mengakibatkan infiltrasi yang terjadi mengalami penurunan. Hal tersebut berdampak pada peningkatan koefisien limpasan sehingga kecenderungan terjadinya banjir juga meningkat. Tujuan dari penelitian ini adalah untuk menganalisis proses infiltrasi pada model infiltrasi buatan, menganalisis tinggi muka air limpasan dan tinggi muka air lapisan selama proses infiltrasi, menganalisis pengaruh waktu terhadap debit keluar, ketinggian air limpasan dan ketinggian air lapisan saat proses pengeringan pada model infiltrasi buatan. Sehingga dapat mengembalikan fungsi tanah sebagai penyerap air dan dengan menggunakan lapisan pasir dan kerikil yang diharapkan secara tidak langsung dapat mengurangi limpasan yang terjudi.

Penelitian ini dilakukan dengan menyiapkan sebuah model yang terbuat dari kayu dengan ukuran 100x100x100 cm³. Penelitian ini dilakukan dalam 3 tahap yaitu pada tahap pertama didapat debit sebesar 0,4486 lt/dtk kemudian diasumsikan sebagai aliran debit besar; tahap kedua didapat debit sebesar 0,3774 lt/dtk kemudian diasumsikan sebagai aliran debit sedang; dan tahap ketiga didapat debit sebesar 0,2896 lt/dtk kemudian diasumsikan sebagai aliran debit kecil, dimana pada setiap tahap dilakukan pengambilan data volume keluar, waktu pengukuran, ketinggian air limpasan dan ketinggian air lapisan. Keseluruhan penelitian dilakukan dalam 1 hari yang dilakukan di area sekitar masjid Al-Itqon kampus terpadu UMY.

Dari hasil penelitian didapat bahwa kemampuan infiltrasi media penyerap cukup besar dan berkurang menurut waktu. Proses infiltrasi yang terbesar adalah pada aliran debit 0,4486 lt/dtk (aliran debit besar) dengan rata-rata penurunan sebesar 0,2818 lt/dtk dalam waktu 28 menit. Dari hasil analisa didapat bahwa ketinggian air tanah terus mengalami kenaikan pada saat debit masuk dialirkan. Baik ketinggian air limpasan, maupun ketinggian air lapisan. Ketinggian air limpasan tertinggi mencapai 33,4 cm pada aliran debit 0,4486 lt/dtk (debit besar). Dan pada ketinggian air lapisan mencapai 46,6 cm juga pada aliran debit besar. Pada proses pengeringan, waktu terlama yang dibutuhkan untuk proses tersebut adalah 37 menit yaitu pada aliran debit 0,4486 lt/dtk (debit besar) dengan rata-rata penurunan ketinggian lapisan yaitu 1,09 cm.