TUGAS AKHIR

ANALISIS HUBUNGAN GEOMETRIK JALAN TERHADAP KECELAKAAN DI JALAN KOLEKTOR BANTUL – SRANDAKAN KM. 0,5 – KM. 3, YOGYAKARTA

Diajukan guna melengkapi persyaratan untuk memenuhi gelar Sarjana Teknik di Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta

Disusun oleh: Fathan Aziz 20190110107

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH YOGYAKARTA 2023

HALAMAN PERNYATAAN

Saya yang bertanda tangan di bawah ini:

Nama	:	Fathan A:	ziz	
NIM	:	20190110	0107	
Judul	:	Analisis	Hubungan	Geometrik
		Kecelaka	an Di Jalan K	olektor Bant

0,5 - Km. 3, Yogyakarta

Menyatakan dengan sebenarnya bahwa Tugas Akhir ini merupakan karya saya sendiri. Apabila terdapat karya orang lain yang saya kutip, maka saya akan mencantumkan sumber secara jelas. Jika dikemudian hari ditemukan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi dengan aturan yang berlaku. Demikian pernyataan ini saya buat tanpa ada paksaan dari pihak mana pun.

Yogyakarta, Agustus 2023 Yang membuat pernyataan AEAKX632945585 athan Aziz

Jalan

Bantul - Srandakan Km.

Terhadap

NIM: 20190110107

HALAMAN PERNYATAAN

Saya yang bertanda tangan di bawah ini:

|--|

NIM : 20190110107

Judul : Analisis Hubungan Geometrik Jalan Terhadap Kecelakaan
Di Jalan Kolektor Bantul – Srandakan Km. 0,5 – Km. 3,
Yogyakarta

Menyatakan bahwa tugas akhir ini merupakan bagian dari penelitian payung dosen pembimbing yang berjudul "Analisis Hubungan Geometrik Jalan Terhadap Kecelakaan Di Jalan Kolektor Bantul – Srandakan Km. 0,5 – Km. 3, Yogyakarta" dan didanai melalui skema hibah Penelitian Pengembangan Internal UMY pada tahun 2022-2023 oleh Universitas Muhammadiyah Yogyakarta Tahun Anggaran 2022-2023.

Yogyakarta, 30 Agustus 2023

v

Penulis,

Fathan Aziz

Dr. Ir. Noor Mahmudah, S.T., M.Eng., IPM., ASEAN. Eng NIK/NIP:/197010032005012002

Dosen Peneliti,

HALAMAN PERSEMBAHAN

Puji syukur panjatkan kepada **Allah SWT** atas segala nikmat sehat rohani dan jasmani serta kemudahan dan kelancaran dalam saya menjalankan kegiatan perkuliahan dan sampai pada titik bisa menyelesaikan tugas akhir ini.

Tugas Akhir yang saya buat ini, saya persembahkan untuk:

Kedua Orang Tua

Terima kasih untuk segala do'a, dukungan dan nasihat baik secara materil maupun moril sehingga membuat saya semangat dan bisa menyelesaikan perkuliahan dan tugas akhir dengan baik.

Dr. Ir. Noor Mahmudah, S.T., M.Eng., IPM., ASEAN. Eng

Selaku dosen pembimbing dalam tugas akhir saya, saya ucapkan terima kasih untuk ilmu dan bimbingan dari ibu sehingga tugas akhir ini bisa saya selesaikan dengan baik.

Teman Seperjuangan

Terima kasih telah membantu saya memberikan dukungan semangat dan tenaga untuk keperluan penelitian, masa perkuliahan dan pengerjaan tugas akhir ini.

PRAKATA

Assalamu'alaikum warahmatullahi wabarakatuh

Segala puji bagi Allah SWT yang menguasai segala sesuatu. Sholawat dan salam selalu tercurahkan kepada Rasulullah SAW beserta keluarga dan sahabat-sahabatnya.

Tugas akhir ini disusun sebagai salah satu syarat untuk memperoleh gelar Sarjana Teknik pada Program Studi Teknik Sipil, Fakultas Teknik, Universitas Muhammadiyah Yogyakarta. Penelitian ini bertujuan untuk menganalisis hubungan geometrik jalan terhadap kecelakaan di Jalan Kolektor Bantul – Srandakan guna mewujudkan jalan yang berkeselamatan.

Selama penyusunan tugas akhir ini, banyak rintangan yang penyusun dapatkan, tetapi berkat bantuan, bimbingan, dan dorongan dari berbagai pihak akhirnya dapat terselesaikan dengan baik. Melalui kesempatan ini, penyusun ingin menyampaikan rasa terima kasih atas kerja sama dan dukungan dari berbagai pihak selama proses penelitian hingga penyusunan tugas akhir ini kepada:

- 1. Puji Harsanto, ST, MT, Ph.D., selaku ketua program studi teknik sipil Universitas Muhammadiyah Yogyakarta.
- 2. Dr. Ir. Noor Mahmudah, S.T., M.Eng., IPM., ASEAN. Eng, selaku dosen pembimbing tugas akhir.
- 3. Prof. Ir. Sri Atmaja Putra Jatining Nugraha Nasir Rosyidi, S.T., M.Sc.Eng., PG-Certf., Ph.D., P.Eng., IPU., ASEAN Eng., selaku dosen penguji tugas akhir.
- 4. Kedua Orang Tua dan keluarga, yang telah memberikan dukungan moral dan materi sehingga tugas akhir ini selesai.
- 5. Seluruh sahabat dan teman yang memberikan dukungan selama masa perkuliahan dan pengerjaan tugas akhir ini.

Akhirnya, setelah segala kemampuan dicurahkan serta diiringi dengan doa untuk menyelesaikan tugas akhir ini hanya kepada Allah SWT semua dikembalikan.

Wallahu a'lam bi Showab. Wassalamu'alaikum warahmatullahi wabarakatuh.

> Yogyakarta, Agustus 2023 Penyusun

DAFTAR ISI

LEMBAR PENGESAHAN TUGAS AKHIR	iii
HALAMAN PERNYATAAN	iv
HALAMAN PERNYATAAN	v
HALAMAN PERSEMBAHAN	vi
PRAKATA	vii
DAFTAR ISI	viii
DAFTAR TABEL	X
DAFTAR GAMBAR	xi
DAFTAR LAMPIRAN	xiv
DAFTAR SIMBOL DAN LAMBANG	XV
DAFTAR SINGKATAN	xvi
DAFTAR ISTILAH	xvii
ABSTRAK	xviii
ABSTRACT	xix
BAB I. PENDAHULUAN	1
1.1 Latar Belakang	1
1.2 Rumusan Masalah	4
1.3 Lingkup Penelitian	4
1.4 Tujuan Penelitian	4
1.5 Manfaat Penelitian	5
BAB II. TINJAUAN PUSTAKA DAN LANDASAN TEORI	6
2.1 Tinjauan Pustaka	6
2.2 Dasar Teori	8
2.2.1 Pengertian Jalan	8
2.2.2 Klasifikasi Jalan Berdasarkan Fungsi	8
2.2.3 Klasifikasi Jalan Berdasarkan Status	9
2.2.4 Klasifikasi Jalan Berdasarkan Sistem Penyedia Prasarana Jalan	9
2.2.5 Bagian-bagian Jalan	10
2.2.6 Kriteria Desain Teknis	10
2.2.7 Alinemen Horisontal	13
2.2.8 Alinemen Vertikal	16
2.2.9 Jalan yang Berkeselamatan	19
2.2.10 Kecelakaan Lalu Lintas	20

2.2.1	1 Faktor Penyebab Kecelakaan	.20
2.2.1	2 Inspeksi Keselamatan Jalan	.21
2.2.1	3 AutoCAD Civil 3D	.21
BAB	III. METODE PENELITIAN	.22
3.1	Bahan atau Materi	.22
3.2	Alat	.22
3.3	Tempat dan Waktu Penelitian	.24
3.4	Tahapan Penelitian	.25
3.5	Analisis Data	.26
3.6	Langkah-Langkah Pemodelan	.27
3.6.1	Langkah – Langkah pembuatan kontur menggunakan <i>Global Mapper</i> 24.1	.27
3.6.2	Langkah – Langkah pemodelan menggunakan <i>software AutoCAD Civil</i> 3D 2023	.33
BAB	IV	.52
4.1	Spesifikasi Jalan	.52
4.2	Kecelakaan Lalu Lintas	.55
4.3	Inspeksi Keselamatan Jalan	.59
4.4	Alinemen Horisontal	.62
4.5	Alinemen Vertikal	.64
4.6	Volume Lalu Lintas	.66
BAB	V	.55
5.1	Kesimpulan	.55
5.2	Saran	.56
DAF	TAR PUSTAKA	.XX
LAM	IPIRAN	.57

DAFTAR TABEL

Tabel 1. 1 Jumlah Kasus Kecelakaan di Kabupaten Bantul Tahun 2022 2
Tabel 2. 1 Kriteria desain teknis untuk jalan Antarkota (Bina Marga, 2021) 12
Tabel 2. 2 Jarak pandang mendahului (JPM) (Bina Marga, 2021) 15
Tabel 2. 3 J _{PH} mobil penumpang (Bina Marga, 2021) 16
Tabel 2. 4 J _{PH} truk pada kelandaian normal dan koreksi kelandaian (Bina Marga,
2021)
Tabel 2. 5 Kelandaian maksimum (Bina Marga, 2021) 17
Tabel 2. 6 Panjang kelandaian kritis (Bina Marga, 2021) 17
Tabel 2. 7 Kontrol desain (K) untuk lengkung vertikal cekung (Bina Marga,
2021)
Tabel 2. 8 Kontrol desain (K) untuk lengkung vertikal cembung berdasarkan J _{PH}
(Bina Marga, 2021)
Tabel 2. 8 Kontrol desain (K) lengkung vertikal cembung berdasarkan J _{PH}
(Lanjutan) 19
Tabel 2. 9 Kontrol desain (K) untuk lengkung vertikal cembung berdasarkan J _{PM}
(Bina Marga, 2021) 19
Tabel 4. 1 karakteristik jalan
Tabel 4. 2 Perbandingan geometrik jalan dengan Pedoman Bina Marga 2021 52
Tabel 4. 3 Data jenis kecelakaan tahun 2020 – 2022 (Kepolisian Resor Bantul,
2023)
Tabel 4. 4 Data fatalitas kecelakaan (Kepolisian Resor Bantul, 2023) 56
Tabel 4. 5 Data kecelakaan berdasarkan jenis kendaraan (Kepolisian Resor
Bantul, 2023)
Tabel 4. 6 Data kecelakaan berdasarkan umur korban (Kepolisian Resor Bantul,
2023)
Tabel 4. 7 Hasil analisis tikungan dengan AutoCAD Civil 3D 64
Tabel 4. 8 Hasil analisis superelevasi jalan eksisting
Tabel 4. 9 Hasil analisis kelandaian jalan eksisting berdasarkan persyaratan
Pedoman Bina Marga 2021 65
Tabel 4. 10 Hasil analisis lengkung vertikal berdasarkan panjang lengkung 66
Tabel 4. 11 Hasil analisis lengkung vertikal berdasarkan jarak pandang dengan
Pedoman Bina Marga 2021 66
Tabel 4. 12 Volume lalu lintas Jalan Bantul – Srandakan arah Barat - Timur
(Dinas Perhubungan DIY, 2022)
Tabel 4. 13 Volume lalu lintas Jalan Bantul – Srandakan arah Timur - Barat
(Dinas Perhubungan DIY, 2022)

DAFTAR GAMBAR

Gambar 1. 1 Jumlah kecelakaan di DIY tahun 2020 – 2022 (Sumber: Bappeda	
DIY, 2023)	1
Gambar 1. 2 Jumlah Kecelakaan Jalan Bantul – Srandakan Tahun $2020-2022$	
(Sumber: Dinas Perhubungan DIY, 2023)	3
Gambar 2. 1 Klasifikasi jalan berdasarkan fungsi (Undang-Undang Nomor 2	
Tahun 2022)	8
Gambar 2. 2 Klasifikasi jalan berdasarkan status (Undang-Undang Nomor 2	
Tahun 2022)	9
Gambar 2. 3 Klasifikasi jalan berdasarkan fungsi (Bina Marga, 2021)	9
Gambar 2. 4 Ruang jalan pada tipikal 4/2 T (Bina Marga, 2021)	. 11
Gambar 2. 5 Tikungan full circle (F-C)	. 13
Gambar 2. 6 Tikungan S-C-S (Spiral-Circle-Spiral)	. 14
Gambar 3. 1 Alat tulis	. 23
Gambar 3. 2 Walking measure	. 23
Gambar 3. 3 Smartphone	. 24
Gambar 3. 4 Lokasi penelitian pada Jalan Bantul – Srandakan Km. 0,5 – 3	. 24
Gambar 3. 5 Bagan alir tahapan penelitian	. 25
Gambar 3. 6 Bagan alir pemodelan menggunakan software AutoCAD Civil 3D	
2023	. 26
Gambar 3. 7 Tampilan website DEMNAS	. 27
Gambar 3. 8 Tampilan peta Kabupaten Bantul	. 27
Gambar 3. 9 Tampilan lokasi penelitian pada Google Earth Pro	. 28
Gambar 3. 10 Tampilan add folder pada Google Earth Pro	. 28
Gambar 3. 11 Tampilan titik lokasi pada Google Earth Pro	. 29
Gambar 3. 12 Tampilan daerah lokasi dengan fitur polygon	. 29
Gambar 3. 13 Tampilan Global Mapper v24.1	. 30
Gambar 3. 14 Tampilan Open file pada Global Mapper v24.1	. 30
Gambar 3. 15 Tampilan daerah penelitian pada Global Mapper v24.1	. 30
Gambar 3. 16 Tampilan daerah yang di-block dengan Digitizer Tool	31
Gambar 3. 17 Tampilan jendela Contour Generation Options	31
Gambar 3. 18 Tampilan Configuration – Projection untuk mengubah zona	
koordinat	. 32
Gambar 3. 19 Tampilan jendela Select Export Format	. 32
Gambar 3. 20 Tampilan jendela Export Bounds setelah lokasi di-block	. 33
Gambar 3. 21 Tampilan Export file ke dalam format .xyz	. 33
Gambar 3. 22 Tampilan awal AutoCAD Civil 3D 2023	. 33
Gambar 3. 23 Tampilan jendela Import Points	. 34
Gambar 3. 24 Tampilan Points Group yang sudah di-import	. 34
Gambar 3. 25 Tampilan jendela Create Surface	. 35
Gambar 3. 26 Tampilan jendela Surface Style	. 35
Gambar 3. 27 Tampilan jendela Point Groups Properties	. 36
Gambar 3. 28 Tampilan jendela Point Groups	. 36

Gambar 3. 29 Tampilan garis kontur	. 36
Gambar 3. 30 Tampilan notasi pada garis kontur	. 37
Gambar 3. 31 Tampilan jendela Drawning Settings	. 37
Gambar 3. 32 Tampilan jendela Drawning Settings	. 38
Gambar 3. 33 Tampilan Map Road	. 38
Gambar 3. 34 Tampilan Alignement Creations Tools	. 39
Gambar 3. 35 Tampilan Create Alignement	. 39
Gambar 3. 36 Tampilan jendela Alignement Layout Tools	. 39
Gambar 3. 37 Tampilan tabel pemodelan tikungan	. 40
Gambar 3. 38 Tampilan Create Surface	. 40
Gambar 3. 39 Tampilan jendelan Create Profile from Surface	. 41
Gambar 3. 40 Tampilan Create Profile View-General	. 41
Gambar 3. 41 Tampilan Create Profile View-Data Bands	. 42
Gambar 3. 42 Tampilan profil memanjang tanah asli	. 42
Gambar 3. 43 Tampilan jendelan Profile View Style bagian Graph	. 42
Gambar 3. 44 Tampilan jendela Profile View Style bagian Grid	. 43
Gambar 3. 45 Tampilan Profile View Style bagian Horizontal Axes	. 43
Gambar 3. 46 Tampilan Profile View Style bagian Vertical Axes	. 44
Gambar 3. 47 Tampilan pilihan Profile Creation Tools	. 44
Gambar 3. 48 Tampilan jendela Create Profile	. 45
Gambar 3. 49 Tampilan potongan memanjang profil rencana	. 45
Gambar 3. 50 Tampilan jendela Profile View Properties menu Hatch	. 46
Gambar 3. 51 Tampilan Create Assembly	. 46
Gambar 3. 52 Tampilan ketika garis Asembly sudah dibuat	. 46
Gambar 3. 53 Tampilan pilihan LaneSuperelevationAOR	. 47
Gambar 3. 54 Tampilan properties pada lane	. 47
Gambar 3. 55 Tampilan pilihan ShoulderExtendAll	. 48
Gambar 3. 56 Tampilan properties pada shoulder	. 48
Gambar 3. 57 Tampilan pilihan Trench Pipes	. 49
Gambar 3. 58 Tampilan properties pada drainase	. 49
Gambar 3. 59 Tampilan Daylight	. 49
Gambar 3. 60 Tampilan jendela Create Corridor	50
Gambar 3. 61 Tampilan alinemen horizontal setelah corridor dibuat	50
Gambar 3. 62 Tampilan pilihan Calculate Superelevation	51
Gambar 3. 63 Tampilan hasil analisis superelevasi	51
Gambar 4. 1 Denah Lokasi Jalan Bantul – Srandakan Km. 0,5 – Km. 3	53
Gambar 4. 2 Potongan melintang jalan	55
Gambar 4. 3 Data Jenis Kecelakaan tahun 2020-2022	56
Gambar 4. 4 Data fatalitas kecelakaan	56
Gambar 4. 5 Data kecelakaan berdasarkan jenis kendaraan	. 57
Gambar 4. 6 Data kecelakaan berdasarkan umur korban	58
Gambar 4. 7 Pengukuran lebar lajur jalan	. 59
Gambar 4. 8 Pengukuran bahu jalan	60
Gambar 4. 9 Lansekap di persimpangan yang tertutup tanaman	60
Gambar 4. 10 Marka jalan yang memudar	61

Gambar 4. 11 Keadaan penerangan jalan	61
Gambar 4. 12 Cahaya menyilaukan pada sore hari	62
Gambar 4. 13 Keadaan rambu jalan	62
Gambar 4. 14 Denah lokasi	63
Gambar 4. 15 Hasil pemodelan alinemen horisontal dengan AutoCAD Civil 3D	
2023	63
Gambar 4. 16 Pemodelan alinemen vertikal jalan eksisting	65
Gambar 4. 17 Rekapitulasi volume lalu lintas jalan Bantul – Srandakan	68

DAFTAR LAMPIRAN

Lampiran 1 Data Kecelakaan Kepolisian Resor Bantul	. 57
Lampiran 2 Formulir IKJ	. 79
Lampiran 3 Tampilan titik awal dan titik akhir penelitian pada AutoCAD Civil	3D
2023	. 87
Lampiran 4 Tampilan tikungan penelitian pada AutoCAD Civil 3D 2023	. 88
Lampiran 5 Dokumentasi Observasi	. 89

DAFTAR SIMBOL DAN LAMBANG

Simbol	Satuan	Keterangan
4/2 TT	-	Empat Lajur Dua Arah Tak Terbagi
V_D	[km/jam]	Kecepatan Desain
Ls	[m]	Panjang Lengkung Peralihan
Lc	[m]	Panjang Lengkung Lingkaran
Rd	[m]	Jari – Jari Rencana Tikungan
Rmin	[m]	Jari – Jari Minimum Tikungan
emaks	[%]	Superelevasi Maksimum
en	[%]	Kemiringan melintang normal
Κ	-	Kontrol Desain
V	[SMP/jam]	Volume Lalu Lintas

DAFTAR SINGKATAN

BAPPEDA	: Badan Perencanaan Pembangunan Daerah
DEMNAS	: Digitasi Elevasi Model Nasional (Indonesia)
DIY	: Daerah Istimewa Yogyakarta
EMP	: Ekivalensi Mobil Penumpang
GIS	: Geographic Information System
HV	: Heavy Vehicle (Kendaraan Berat)
IKJ	: Inspeksi Keselamatan Jalan
JKP	: Jalan Kolektor Primer
\mathbf{J}_{PH}	: Jarak Pandang Henti
J_{PM}	: Jarak Pandang Menyiap
JSD	: Jalan Sedang
LV	: Light Vehicle (Kendaraan Ringan)
MC	: Motorcycle (Kendaraan Bermotor)
MHV	: Medium Heavy Vehicle (Kendaraan Berat Sedang)
PERMEN	: Peraturan Menteri
POLRI	: Kepolisian Negara Republik Indonesia
PU	: Pekerjaan Umum
PVI	: Point Vertical Intersection
SMP	: Satuan Mobil Penumpang
STA	: Stationing
UM	: Unmotorized (Kendaraan tak Bermotor)
UTM	: Universal Transverse Mercator
UU	: Undang-Undang

DAFTAR ISTILAH

1. DEMNAS

DEMNAS merupakan salah satu hasil dari Badan Informasi Geospasial guna melayani ketersediaan informasi elevasi di Indonesia

2. ELEVASI

Elevasi merupakan suatu nilai digunakan untuk memaparkan ketinggian dalam satuan meter dari atas permukaan laut

3. EMP

EMP merupakan suatu nilai konversi guna menyetarakan bermacam jenis kendaraan yang beroperasi pada suatu ruas jalan ke dalam satu jenis kendaraan yaitu mobil penumpang

4. Garis Kontur

Garis kontur merupakan garis khayal atau maya yang menghubungkan titiktitik dengan ketinggian (elevasi) yang sama

5. JKP

Jalan kolektor primer merupakan jalan yang dikembangkan untuk melayani dan menghubungkan kota-kota antar pusat kegiatan wilayah dan pusat kegiatan lokal dan atau kawasan-kawasan berskala kecil dan atau pelabuhan pengumpan regional dan pelabuhan pengumpan lokal

6. JSD

Jalan sedang merupakan bagian dari kelas jalan berdasarkan spesifikasi penyedia prasarana jalan dengan lalu lintas jarak sedang serta paling sedikit memiliki 2 lajur dan 2 arah dengan lebar paling kecil 7 meter

7. MKJI

Manual Kapasitas Jalan Indonesia adalah pedoman yang digunakan untuk menganalisis, merencanakan, merancang, serta operasi fasilitas pada lalu lintas jalan yang disusun oleh Direktorat Jenderal Bina Marga Tahun 1997